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1 Modules over Rings

1.1 Homomorphism Group and Hom Functor

Definition 1.1. Let A be a ring and X,X ′ be A-modules. We define HomA(X,X ′) to be
the set of A-module homomorphisms from X to X ′. It is a group under pointwise addition
of maps. We define an action A× HomA(X,X ′)→ HomA(X,X ′) by

(a · φ)(x) = a · (φ(x))

for a ∈ A, φ ∈ HomA(X,X ′), and x ∈ X. This makes HomA(X,X ′) an A-module.

Definition 1.2. Let A be a ring and Y an A-module. We define the functor HomA(Y,−)
from the category of A-modules to itself by sending an A-module X to the A-module
HomA(Y,X) and sending f ∈ HomA(X,X ′) to

HomA(Y, f) : HomA(Y,X)→ HomA(Y,X ′)

φ 7→ f ◦ φ

The identity is preserved, because HomA(Y, IdX) is given by φ 7→ Id ◦φ = φ. It also preserves
composition: let f ∈ HomA(X,X ′) and g ∈ HomA(X ′, X ′′). Then for φ ∈ HomA(Y,X),

HomA(Y, g ◦ f)(φ) = (g ◦ f) ◦ φ = g ◦ (f ◦ φ) = g ◦ HomA(Y, f)(φ)

= HomA(Y, g) ◦ HomA(Y, f)(φ)

=⇒ HomA(Y, g ◦ f) = HomA(Y, g) ◦ HomA(Y, f)

so it is covariant.

Definition 1.3. Let A be a ring and Y an A-module. We define the functor HomA(−, Y )
from the category of A-modules to itself by sending an A-module X to the A-module
HomA(X, Y ) and sending f ∈ HomA(X,X ′) to

HomA(f, Y ) : HomA(X ′, Y )→ HomA(X, Y )

φ 7→ φ ◦ f

The identity is preserved, because HomA(IdX , Y ) is given by φ 7→ φ ◦ IdX = φ. Unlike the
above, this is a contravariant functor: let f ∈ HomA(X,X ′) and g ∈ HomA(X ′, X ′′). Then
for φ ∈ HomA(X ′′, Y ),

HomA(Y, g ◦ f)(φ) = φ ◦ (g ◦ f) = (φ ◦ g) ◦ f = HomA(g, Y )(φ) ◦ f
= HomA(f, Y ) ◦ HomA(g, Y )(φ)

=⇒ HomA(Y, g ◦ f) = HomA(f, Y ) ◦ HomA(g, Y )

so it is contravariant.

Definition 1.4. Let A be a ring and let

X ′
f−−−→ X

g−−−→ X ′′

be a sequence of A-modules. Let Y be an A-module. The induced sequence is

HomA(X ′, Y )
HomA(f,Y )←−−−−−− HomA(X, Y )

HomA(g,Y )←−−−−−− HomA(X ′′, Y )
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Definition 1.5. Let A-Mod and B-Mod be the categories of A− and B−modules respec-
tively and let F : A-Mod→ B-Mod be a functor. F is exact if for every exact sequence

. . .
f−−−→ X

f ′−−−→ X ′
f ′′−−−→ X ′′

f ′′′−−−→ . . .

the induced sequence

. . .
F (f)−−−→ F (X)

F (f ′)−−−→ F (X ′)
F (f ′′)−−−→ F (X ′′)

F (f ′′′)−−−−→ . . .

is exact.

1.2 Free Modules

Definition 1.6. Let M be a module over a ring A and let S ⊂M . A linear combination
of elements of S is a sum ∑

s∈S

ass

where as ∈ A and there are only finitely many nonzero terms.

Definition 1.7. Let M be a module over a ring A and let S ⊂M . S generates S over A
if every x ∈M can be written as a linear combination of elements of S. That is,

M =

{∑
s∈S

ass : as ∈ A, finitely many nonzero terms

}

Definition 1.8. Let M be a module over a ring A and let S ⊂M . S is linearly indepen-
dent over A if ∑

s∈S

ass = 0 =⇒ ∀s as = 0

That is, the only linear combination of elements of S that is zero is the trivial linear combi-
nation.

Definition 1.9. Let M be a module over a ring A and let S ⊂ M . S is a basis of M if
S 6= ∅ and S generates M and S is linearly independent over A. Note that if M has a basis
and M 6= {0} and A 6= {0}, then every element of M has a unique expression as a linear
combination of elements of S.

Definition 1.10. A free module is a module that has a basis. (Note: The zero module is
considered free.)

Definition 1.11. After fixing a ring A, a free module is determined (up to isomorphism)
by the size of a basis. Thus the size of a basis is invariant (this is a theorem). Thus we can
define the rank of a free A-module to be the size of any basis for that module.

Definition 1.12. A finite free module is a free module of finite rank.
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1.3 Dual Module

Definition 1.13. Let A be a commutative ring and let E be a free A-module. The dual
module, denoted E∨ is the A-module Hom(E,A). Elements of E∨ are called linear func-
tionals. For x ∈ E and f ∈ E∨, we define 〈x, f〉 = f(x). Note that for a fixed x, the map
E∨ → A defined by f 7→ f(x) is an injective A-module homomorphism.

Definition 1.14. Let A be a commutative ring and let E be a free A-module with basis
{xi}i∈I . For each i, define fi : E → A by fi(xj) = δij. Note that {fi}i∈I is not always a basis
of E∨. When E has finite rank, {fi}i∈I is called the dual basis. (It is called the dual basis
because it is in fact a basis for E∨.)

1.4 Modules over Principal Ideal Domains

Definition 1.15. An R-module M is cyclic if there exists x ∈M so that M = Rx = {rx :
r ∈ R}.

Definition 1.16. A torsion module is an R-module M such that for any x ∈ M , there
exists r ∈ R such that r 6= 0 and rx = 0.

Definition 1.17. An element x of an R-module M is a torsion element if there exists
r ∈ R that is not a zero divisor so that rx = 0.

Definition 1.18. Let M be an R-module. The torsion submodule of M , denoted Mtor,
is the submodule of M consisting of all torsion elements of M .

Definition 1.19. Let R be a PID and let E be an R-module. For a fixed x ∈ E, the map
R → E defined by r 7→ rx is a homomorphism. The kernel of this homomorphism is a
principal ideal, since R is a PID. Any generator m of that ideal is a period of x.

Definition 1.20. Let R be a PID and let E be an R-module. An exponent of E is an
element c ∈ R with c 6= 0 such that cE = 0.

Definition 1.21. Let R be a PID and let E be an R-module. Let p ∈ R be a prime. We
define E(p) to be the submodule of E consisting of all elements x ∈ E so that x has an
exponent that is a power of pn for n ≥ 1. A p-submodule of E is a submodule of E(p).

Recall that in a PID, a prime element is a non-unit one that cannot be expressed as a
product of two non-unit elements.

1.5 Euler-Poincare Maps

Definition 1.22. Let A be a ring, let C be a collection of A-modules such that 0 ∈ C and
if 0→M ′ →M →M ′′ → 0 is exact, then

M ∈ C ⇐⇒ M ′ ∈ C and M ′′ ∈ C
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Let G be an abelian group. An Euler-Poincare mapping is map φ : C → G such that if
0→M ′ →M →M ′′ → 0 is exact, then

φ(M) = φ(M ′) + φ(M ′′)

and φ(0) = 0. (Note that a consequence of this definition is that φ is well-defined up to
isomorphism, that is, φ maps isomorphic A-modules to the same element of G.)

Motivating example of Euler-Poincare maps: Assigning each finitely-generated Z module to
its rank as an abelian group. Another example: Assigning each finite dimensional vector
space over k to its dimension.

1.6 Tensor Products

Definition 1.23. Let R be a commutative ring. Let E1, . . . , En, F be R-modules. Then
Ln(E1, . . . ,En;F ) is the R-module of multilinear maps f : E1 × . . .× En → F . Addition
and scalar multiplication of maps are defined as follows:

(f + g)(e1, . . . , en) = f(e1, . . . , en) + g(e1, . . . , en) (rf)(e1, . . . , en) = r(f(e1, . . . , en))

Definition 1.24. Let R be a commutative ring and E1, . . . , En be R-modules. Let M be
the free R-module generated by E1 × . . .×En. Let N be the submodule of M generated by
elements of the form

(x1, . . . , xi + x′i, . . . , xn)− (x1, . . . , xi, . . . , xn)− (x1, . . . , x
′
i, . . . , xn)

(x1, . . . , axi, . . . , xn)− a(x1, . . . , xn)

The module M/N is the tensor product of E1, . . . , En. This is denoted

E1 ⊗R E2 ⊗R . . .⊗R En or
n⊗
i=1

Ei

Elements of
⊗n

i=1Ei are written as x1 ⊗ . . .⊗ xn where xi ∈ Ei. There is a canonical map

⊗ :
n∏
i=1

Ei →
n⊗
i=1

Ei

given by
(x1, . . . , xn) 7→ x1 ⊗ . . .⊗ xn

which is R-multilinear.

Definition 1.25. Let φ : E ′ → E be an R-module homomorphism and let F be an R-
module. Then induced map φ∗ : F ⊗ E ′ → F ⊗ E is the linear map defined on the
generators y ⊗ x′ by

φ∗(y ⊗ x′) = y ⊗ φ(x′)

where y ∈ F and x′ ∈ E ′. Note that not every element of F ⊗ E ′ can be written as y ⊗ x′,
but every element can be written as a linear combination of such elements, and there is a
unique linear map that satisfies this. Note that φ∗ is the image φ under the tensor functor
F ⊗−.
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1.7 Flat Modules

Definition 1.26. Let F be an R-module. F is flat if the functor E 7→ E ⊗R F is exact. (It
is always right exact, so this is equivalent to it being left exact.)

1.8 Homology

Definition 1.27. Let R be a ring. A chain complex of R-modules is a sequence of R-
modules Ei and R-module homomorphisms di : Ei → Ei+1 for i ∈ Z, such that di ◦di−1 = 0.

. . . −−−→ Ei−1 di−1

−−−→ Ei di−−−→ Ei+1 −−−→ . . .

(Note: The sequence is not necessarily exact. Every exact sequence is a complex, but the
reverse is not true.)

Definition 1.28. A chain complex of R-modules is bounded on the left if there exists
n ∈ Z so that Ei = 0 for all i ≤ n. Similarly, it is bounded on the right if there exists n
so that Ei = 0 for n ≥ i. It is bounded or finite if it bounded on both sides.

Definition 1.29. Let M be an R-module. A resolution of M is an exact sequence

. . .→ E2 → E1 → E0 →M → 0

Definition 1.30. A free resolution is a resolution where each Ei is free.

Definition 1.31. A projective resolution is a resolution where each Ei is projective.

Definition 1.32. Let R be a ring, and let (Ei, di) and (E ′i, d
′
i) be complexes of R-modules.

A morphism of complexes of degree r is a sequence of R-module homomorphisms
fi : E ′i → Ei+r so that for all i the following diagram commutes.

E ′i
fi−−−→ Ei+r

d′i

y ydi+r
E ′i+1 −−−→

fi+1

Ei+r+1

(Chain complexes along with morphisms form a category. Also, most important morphisms
have degree zero.)

Definition 1.33. Let (Ei, di) be a chain complex of R-modules. The module ker di is called
the i-cycles, and the module im di−1 is called the i-boundaries. The quotient ker di/ im di−1

is the i-th homology of the complex, and is denoted Hi(E). The homology forms its own
chain complex,

. . . −−−→ Hi−1(E) −−−→ Hi(E) −−−→ Hi+1(E) −−−→ . . .

(I think all the maps in this complex are just the zero map.)
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Definition 1.34. Let R be a ring and let (Ei, di) and (E ′i, d
′
i) be chain complexes of R-

modules. Let fi : Ei → E ′i be a morphism of degree zero, so we have the commutative
diagram

E ′i−1
fi−1−−−→ Ei−1

d′i−1

y ydi−1

E ′i
fi−−−→ Ei

d′i

y ydi
E ′i+1 −−−→

fi+1

Ei

By commutativity of the top square, im fi ⊂ im di−1, so we can think of fi as a map fi :
im d′i−1 → im di−1. By commutativity of the bottom square, f(ker d′i) ⊂ ker di, so we can
also think of fi as a map fi : ker d′i → ker di. Thus there is an induced map Hi(f) :
ker d′i/ im d′i−1 → ker di/ im di−1, that is, Hi(f) : Hi(E

′) → Hi(E). Hi(f) is the induced
map on homology. The sequence of maps Hi(f) is a morphism of chain complexes between
H(E ′) and H(E), and this map is denoted f∗ : H(E ′)→ H(E).

1.9 Projective Modules

For the following, let A be a ring. We work in the category of A-modules, so all homomor-
phisms are homomorphisms of A-modules.

Definition 1.35. Let A be a ring. An A-module P is projective if any of the following
hold:
(1) Given a homomorphism f : P → M ′′ and a surjective homomorphism g : M → M ′′,
there exists a homomorphism h : P → M so that g ◦ h = f . That is, given a commutative
diagram as below, the dotted line can be filled in.

P

M M ′′ 0

h
f

g

(2) Every exact sequence 0→M ′ →M ′′ → P → 0 splits.
(3) There exists a module M so that P ⊕M is free.
(4) The functor M 7→ HomA(P,M) is exact.
(This is both a definition and a theorem. The needed theorem states that these definitions
are in fact equivalent.)

1.10 Injective Modules

Definition 1.36. Fix a ring R, and let I be an R-module. An R-module I is injective if
any of the following hold.
(1) Given an exact sequence 0→M ′ →M of R-modules and a homomorphism f : M ′ → I,
there exists h so that the following diagram commutes.
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0 M ′ M

I

f
h

(2) The functor M 7→ HomR(M, I) is exact.
(3) Every exact sequence 0→ I →M →M ′′ → 0 splits.
(This is both a definition and a theorem. The theorem says that these things are in fact
equivalent. So this complex is trivial, but still sometimes useful to think about.)

1.11 Homotopies of Morphisms of Complexes

Definition 1.37. Let R be a ring, and let (En, dn) and (E ′n, d
′
n) be chain complexes of R-

modules. Let f, g : E → E ′ be morphisms of complexes of degree zero. Then f is homotopic
to g if there exist homomorphisms hn : En → E ′n−1 so that

fn − gn = d′n−1hn + hn+1dn

2 Field Theory

2.1 Review of Rings and Polynomials

Definition 2.1. Let A be an integral domain. An element a 6= 0 is irreducible if it is not
a unit and the equation bc = a implies that one of b, c is a unit.

Definition 2.2. Let A be a subring of a commutative ring B. For b ∈ B, the evaluation
homomorphism evb : A[x]→ B is defined by f 7→ f(b). (It is a ring homomorphism.)

2.2 Algebraic Extensions

Definition 2.3. Let F be a field. An extension field of F is a field E such that F ⊂ E.
This is also denoted E/F . (This latter notation, though similar looking, is unrelated to the
notation for quotients of groups and rings.)

Definition 2.4. Let F be a field and E a field extension. The dimension of E as a vector
space over F is denoted [E : F ].

Definition 2.5. Let E be a field extension of F . This is a finite extension if [E : F ] is
finite, and an infinite extension if [E : F ] is infinite.

Definition 2.6. Let F be a subfield of a field E. An element α ∈ E is algebraic over
F if it is the solution to a polynomial equation with coefficients in F . That is, there exist
a0, . . . , an ∈ F so that

anα
n + . . .+ a1α + a0 = 0

where not all ai are zero. Equivalently, α is algebraic over F if the evaluation homomorphism
F [x]→ E given by f 7→ f(α) has nontrivial kernel.
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Definition 2.7. Let E be a field extension of F . If every element of E is algebraic over F ,
then E is an algebraic extension of F .

Definition 2.8. Let F be a subfield of a field E. An element α ∈ E is a variable over F
or transcendental over F if it is not algebraic.

Definition 2.9. Let E be a field extension of a field F , and let α ∈ E be algebraic. Let
evα : F [x]→ E be the evaluation homomorphism f 7→ f(α). Since F [x] is a principal ideal
domain, the kernel is generated by a monic polynomial p(x). Then

F [x]/〈p(x)〉 ∼= F [α]

Because F [α] is an integral domain, 〈p(x)〉 is prime, so p(x) is irreducible. We can always
divide p by a unit so to get a monic polynomial. This monic polynomial is uniquely deter-
mined by α and F , so it is called the irreducible polynomial of α over F , and denoted
Irr(α, F ).

Definition 2.10. A tower of fields is a sequence

F1 ⊂ F2 ⊂ . . . ⊂ Fn

of extension fields.

Definition 2.11. A tower of fields is finite if each extension is finite

Definition 2.12. Let k ⊂ E be a field extension and α ∈ E. Then k(α) is the smallest
subfield of E containing k and α.

Definition 2.13. Let k ⊂ E be a field extension and α1, . . . , αn ∈ E. Then k(α1, . . . , αn)
is the smallest subfield of E containing k and α1, . . . , αn. Note that

k(α1, α2) =
(
k(α1)

)
(α2)

Also note that

k(α1, . . . , αn) =

{
f(α1, . . . , αn)

g(α1, . . . , αn)
: f, g ∈ k[x1, . . . , xn], g(α1, . . . , αn) 6= 0

}
Definition 2.14. Let k ⊂ E be a field extension. E is finitely generated over k if there
exist α1, . . . , αn ∈ E so that E = k(α1, . . . , αn).

Definition 2.15. Let E,F, L be fields such that E,F ⊂ L. The compositum of E and
F , denoted EF , is the smallest subfield of L containing both E and F . More precisely, we
should refer to EF as the compositum of E and F in L.

Definition 2.16. Let {Fi}i∈I be a family of subfields of L. The compositium of the family
is the smallest subfield of L containing each Fi.

Definition 2.17. Let C be a class of extension fields F ⊂ E. C is distinguished if it
satisfies
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1. For any tower k ⊂ F ⊂ E, the extension k ⊂ E is in C if and only if k ⊂ F and F ⊂ E
are in C.

2. If k ⊂ E is in C, and k ⊂ F is any extension, and E,F are both contained in some
field, then F ⊂ EF is in C.

3. If k ⊂ F and k ⊂ E are in C and E,F are contained in some field, then k ⊂ EF is in
C.

Note that (3) is a consequence of (1) and (2), so to check that a class is distinguished it
suffices to prove that (1) and (2) hold.

2.3 Algebraic Closure

Definition 2.18. Let E,F, L be fields with F ⊂ E and σ : F → L be an embedding. An
embedding τ : E → L is over σ if τ |F = σ. This is equivalent to saying that τ extends
σ. If L = F and σ = IdF , then τ is an embedding of E over F . That is, the following
diagram commutes.

E L

F

τ

ι σ

where ι : F ↪→ E is the inclusion.

Definition 2.19. A field k is algebraically closed if every polynomial k[x] of degree ≥ 1
has a root in k.

Definition 2.20. Let k be a field. Let k be the unique algebraically closed field such that
k ⊂ k is an algebraic extension (existence and uniqueness are theorems). The field k is the
algebraic closure of k.

2.4 Splitting Fields and Normal Extensions

Definition 2.21. Let k be a field and let f ∈ k[x] with degree ≥ 1. A splitting field of f
is an extension K of k such that f splits into linear factors in K[x] and K is generated over
k by the roots of f .

Definition 2.22. Let k be a field. An extension k ⊂ K is normal if K is the splitting field
of a family of polynomials in k[x].

2.5 Separable Extensions

Definition 2.23. Let F,E, L be fields with L algebraically closed and F ⊂ E and let
σ : F → L be an embedding. Define

Sσ = {τ : E → L : τ |F = σ}

That is, Sσ is the set of possible extensions of σ to E.

11



E L

F

τ

ι
σ

The size of Sσ is the separable degree of the extension F ⊂ E, and denote [E : F ]s. (It is
a theorem that the size of Sσ is independent of σ.)

Definition 2.24. Let k ⊂ E be a finite extension. It is separable if [E : k]s = [E : k].

Definition 2.25. Let k be a field with algebraic closure k. An element α ∈ k is separable
over k if k(α) is separable over k. Equivalently, α is separable if Irr(α, k) has no repeated
roots.

Definition 2.26. Let k be a field. A polynomial f ∈ k[x] is separable if it has no multiple
roots. (Any root of a separable polynomial is separable.)

Definition 2.27. Let k ⊂ E be an extension. E is separable over k if every extension
k(α1, . . . , αn) with α1, . . . , αn ∈ E is separable over k.

Definition 2.28. Let k be a field with algebraic closure k. The separable closure of k is
the compositum of all separable extension of k in k.

Definition 2.29. Let k be a field and α ∈ k be algebraic over k. Let σ1, . . . , σr be the
distinct embeddings of k(α) into k over k. The conjugates of α in k are the elements
σ1(α), . . . , σr(α). (These are the distinct roots of Irr(α, k).)

Definition 2.30. Let k ⊂ E be a field extension. If there exists α ∈ E so that E = k(α),
then α is a primitive element of E over k.

Definition 2.31. A field k is perfect if kp = k or k has characteristic zero.

2.6 Finite Fields

Definition 2.32. Let Fq be a finite field with q = pn elements. The Frobenius map is the
map Fq → Fq given by x 7→ xp. (It is an automorphism of fields.)

2.7 Inseparable Extensions

Definition 2.33. Let k be a field, and f ∈ k[x]. Given α ∈ k, we can write f as (x−α)mg(x)
where α is not a root of g. The multiplicity of α as a root of f is m.

Definition 2.34. Let k ⊂ E be a finite extension. The inseparable degree is the quotient

[E : k]

[E : k]s

which is also denoted [E : k]i.
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2.8 Galois Theory

Definition 2.35. Let K be a field and let G be a group of automorphisms of K. The fixed
field of G is the set

KG = {x ∈ K : σ(x) = x, ∀σ ∈ G}

(Note that this set is in fact always a field.)

Definition 2.36. A Galois extension is an algebraic, normal, and separable field extension.

Definition 2.37. Let k ⊂ K be a Galois extension. The Galois group of K over k is the
group of automorphisms of K that fix k,

Gal (K/k) = {σ : K → K : σ|k = Idk}

Definition 2.38. Let k ⊂ K be a Galois extension, and let F be an intermediate field
k ⊂ F ⊂ K. The group associated to F is Gal(K/F ). (It is a subgroup of Gal(K/k).)

Definition 2.39. Let k ⊂ K be a Galois extension with Galois group G = Gal(K/k). A
subgroup H ⊂ G belongs to an intemediate field F (where k ⊂ F ⊂ K) if H = Gal(K/F ).

Definition 2.40. A Galois extension is cyclic if the Galois group is cyclic.

Definition 2.41. A Galois extension is abelian if the Galois group is abelian.

2.9 Computing Galois Groups of Polynomials

Definition 2.42. Let k be a field and let f ∈ k[x] be a separable polynomial of degree ≥ 1.
Let K be the splitting field of k, and let G = Gal(K/k). Then G is the Galois group of f .

Definition 2.43. Let f(x) = x3 + ax + b ∈ k[x]. The discriminant of f is ∆(f) =
−4a3 − 27b2.

2.10 Roots of Unity

Definition 2.44. Let k be a field. A root of unity is an element ζ ∈ k that is a root of
xn− 1 for some n ∈ N. Note that if char k = p, then xp

m − 1 has a unique root (1) and thus
there is no pmth root of unity except 1. However, if n > 1 is not divisible by char k, then
xn− 1 is separable (look at the derivative) so there are exactly n distinct nth roots of unity.

Definition 2.45. Note that nth roots of unity form a cyclic group under multiplication.
This group is denoted µn. A generator for this group is a primitive nth root of unity.

Definition 2.46. Let k be a field of characteristic zero, and let ζn ∈ k be a primitive nth
root of unity. We can factor xn − 1 into linear factors in k(ζn) as

xn − 1 =
∏
ζ

(x− ζ)
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An nth root of unit ζ has period d if ζd = 1. The dth cyclotomic polynomial is Φd(x)
defined by

Φd(x) =
∏

period ζ=d

(x− ζ)

Note that we can also write Φn(x) as

Φn(x) =
xn − 1∏

d|n,d<n Φd(x)

Note that the roots of Φn(x) are precisely the primitive nth roots of unity, so deg Φn(x) =
φ(n) (Euler totient function). Note also that Φn is irreducible.

Definition 2.47. Let Fq be the finite field with q = pn elements, where p is an odd prime.
For v ∈ Z\{0} not divisible by p, we define the Legendre symbol, also called the quadratic
symbol, (

v

p

)
=

{
1 v ≡ x2 (mod p) for some x

−1 v 6≡ x2 (mod p) for all x

2.11 Linear Independence of Characters

Definition 2.48. Let G be a monoid and k a field. A character of G in k is a monoid
homomorphism G → k× (into the multiplicative group of nonzero elements of k). The
trivial character is the character x 7→ 1. (Note: Groups are monoids, so k× is a monoid.)

Definition 2.49. Let G be a monoid and k a field. A set of characters fi : G → k are
linearly independent if the only linear combination of the fi over k equal to zero is the
trivial one. That is, ∑

i

aifi = 0 =⇒ ai = 0 ∀i

where ai ∈ k.

2.12 Norm and Trace

Definition 2.50. Let E/k be a finite field extension, with [E : k]s = r and [E : k]i = pµ.
(If char k = 0 then [E : k]i = 1.) Let σ1, . . . , σr be the distinct embeddings of E into k. For
α ∈ E, the norm of α is

NE/k(α) = NE
k (α) =

r∏
m=1

σm
(
αp

µ)
=

(
r∏

m=1

σm (α)

)[E:k]i

Note that if E/k is separable, then [E : k]i = 1 so the norm can be written much more
simply as

NE/k(α) =
r∏

m=1

σm(α)
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Definition 2.51. Let E/k be a finite field extension, with [E : k]s = r and [E : k]i = pµ.
(If char k = 0 then [E : k]i = 1.) Let σ1, . . . , σr be the distinct embeddings of E into k. For
α ∈ E, the trace of α is

TrE/k(α) = TrEk (α) = [E : k]i

r∑
m=1

σm(α)

Note that if E/k is not separable, then [E : k]i is divisible by p = char k, so [E : k]i = 0, so
the trace is zero. If E/k is separable, then

TrE/k(α) =
r∑

m=1

σm(α)

2.13 Solvable and Solvable by Radicals

Definition 2.52. A finite separable extension E/k is solvable if there exists a finite Galois
extension K/k with k ⊂ E ⊂ K such that Gal(K/k) is a solvable group.

K

E

F

Definition 2.53. A finite separable extension E/k is solvable by radicals if there is a
finite extension K/k such that k ⊂ E ⊂ K and there is a tower

k = K0 ⊂ K1 ⊂ . . . ⊂ Km = K

where each step of the tower Ki+1/Ki is one of the following types:

1. It is formed by attaching a root of unity.

2. It is formed by attaching a root of xn − a with a ∈ Ki where gcd(n, char k) = 1.

3. (Only when char k = p > 0) It is formed by attaching a root of xp−x−a with a ∈ Ki.
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